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Gap metric theory has being successfully used to evaluate and to certify the stability of
closed-loop systems. In this paper a stability analysis of a robotic manipulator subjected to
a robust LQR controller, based on a nonlinear gap metric approach, is proposed. The main
contribution is the demonstration of the capability of such a gap metric in defining the range
of admissible parametric as well as dynamic uncertainties of a controlled robotic system. It
is shown that the LQR controller can handle a large range of parametric uncertainties
represented by the load mass variation in the end effector of the robotic manipulator, and
that this range is constrained in the nonlinear gap metric ball.
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1 Introduction

The gap metric is a mathematical tool originated from set theory and adapted to control
theory in the 80’s. The gap metric evaluates the quality, in terms of robust stability, of
a given controller by measuring the distance between uncertain systems to be controlled,
represented by a sphere of perturbations, and comparing this distance with a performance
index. Initially the gap metric was designed to calculate the distance between linear
frequency response systems, but was later generalized to nonlinear systems in the time
domain. There are several extensions of the gap metric topology in the control literature.

The robust linear-quadratic-regulator (LQR) controller is designed to stabilize linear
systems subjected to a given range of uncertainties. This type of controller can also be
applied to nonlinear systems if certain conditions are satisfied such as the existence of a
Lyapunov function and the matched uncertainty condition. In this paper the specific LQR
controller design presented in [1], for a two link nonlinear SCARA robotic manipulator, is
evaluated in terms of its robustness using a nonlinear gap metric. Such analysis serves as
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a supervisory technique to the robust LQR controller design by accessing, in a practical
manner, the admissible range of uncertainties that the closed-loop nonlinear system can
handle.

2 Purpose

The aim of this paper is to briefly introduce the concept and application of a mod-
ern control technique for the uncertainty and stability analysis of a SCARA manipulator
subject to a robust LQR controller. Two points motivated the choice of a nonlinear gap
metric for the current LQR problem. The first one is related to the predominance of this
metric in the engineering literature. To the best of authors’ knowledge, the nonlinear gap
metric was successfully used only in a PhD thesis and in a paper [2], both to solve a highly
nonlinear chemical problem. Thus, there is a clear lack of applications of a nonlinear gap
metric in robotic systems. The second one is the very promising certification approach
based on a linear gap metric applied to a wearable robot, which has shown that the gap
metrics can be a valuable tool for control analysis and synthesis.

3 Methods

In this section, general mathematical formulations necessary for the simulation results
are presented.

3.1 Modeling and robust LQR design

This sections brings a short summary of important modelling and control designs pre-
sented in [1], for a more comprehensive understanding of the nonlinear gap metric approach.

A visual representation of the SCARA manipulator is presented in Figure 1.

Figure 1: SCARA schematic.

The modeling of the 2-link SCARA robot is done using the Lagrange method. Its
well-known equation of motion can be written as



M(q)q̈ +N(q, q̇) = τ (1)

where q is the vector of joints positions q =

[
q1
q2

]
, M(q) is the inertia matrix, N(q, q̇) is

the sum of the Coriolis, gravity and friction forces, and τ is the motor generalized forces
vector. Eq.(1) can be represented by the open-loop configuration showed in Figure 2.

Figure 2: Standard open-loop configuration.

The input u is represented by the generalized forces vector τ and the output y is
represented by the joint variables q, q̇ and q̈. The set of input/output points of P defines
the extend graph, GP , of P .

For the robust LQR design, the ultimate goal is to find a control law u∗ that minimizes
the following cost function: ∫ ∞

0
(f2max(q) + qTq + u∗Tu∗)dt (2)

where f2max(q) is a nonlinear function which represents bounds for the maximum uncer-
tainties in the matrices M and N , in the form of load mass variations, desired for the
control system design. Eq.(2) can be solved by a Lyapunov stability technique that can be
translated into a Riccati equation which has an analytical solution. More details on the
control design and its application to the SCARA manipulator can be found in [1]. The
closed-loop configuration of the control law u∗ with the plant P is showed in Figure 3.

Figure 3: Standard feedback configuration.

The set of input/output points of C defines the extend graph GC of C. The main
objective of the control law u∗ is to calculate a torque τ in order to produce a desired
position, velocity and acceleration for the joints variables.

3.2 Nonlinear gap metric

The gap metric, for control theory, represents the distance in space of (possibly unsta-
ble) systems in terms of dynamic responses. The gap metric was first developed to work



only with linear systems but then was generalized to nonlinear systems. The metric used
in this letter is the nonlinear, δν,ce, gap metric [3]. The nonlinear gap metric is defined as:

δν,ce(P1, P2) = supx2∈GP2
∩L2,ceinfx1∈GP1

∩L2,ce

‖x2 − x1‖2
‖x1‖2

(3)

Where L2,ce is extended Lebesgue space L2,ce in the time domain, and GP1 and GP2 are
the extended graphs of P1 and P2 respectively. P2 can be viewed as a plant that belongs
to a sphere of perturbations, represented by the uncertainties, around a nominal plant
P1. It is important to highlight that the nonlinear gap metric is calculated based on the
open-loop configuration only (Figure 2).

The next step, after the distance calculation shown in Eq.(3), is to find out if the
systems are close in the gap metric sense, which means proximity in terms of dynamic
response. The following theorem is stated:

Theorem 3.2.1 (Robust stability guarantee). There is a stabilizing control law u∗1 for both
P1 and P2 if:

δ(P1, P2) < γ(P1, u
∗
1) (4)

γ(.) is a stability margin metric, defined as the nonlinear parallel projection of the
closed-loop configuration of the control law u∗1 with the plant P1 (Figure 3):

γ(P1, u
∗
1) = infx1∈ GP1

, z1∈ GC1

‖x1 − z1‖2
‖x1‖2

(5)

With GC1 as the extended graph of C1. The basic goal of the gap metric analysis is to
evaluate the robustness of the control law obtained by the LQR design (Eq.(2)) using
theorem 3.2.1.

4 Results

The robust LQR controller to be evaluated, which was design by [1], is presented below:

u∗ = −
[
4, 9 1, 9
1, 9 2, 4

]
q −

[
36, 12 −11, 73
−11, 73 12, 40

]
q̇ (6)

Two case studies are proposed, both for an initial condition of q0=
[
90◦

90◦

]
and q̇0=

[
0◦

0◦

]
. In the first case, the end-effector of the SCARA manipulator is subjected to a load mass,
ml, variation in the range of [0, 14 ; 6, 72] kg. The following values of the gap metric and
nonlinear parallel projection, using Eq.(3) and Eq.(5), can be obtained for this first case
study:



γ(Pnom, u
∗) = 0,65

ml [kg] δν,ce(Pnom, Pml
)

0,14 0,12
0,56 0,18
6,44 0,63
6,72 0,69

Table 1: Values of the nonlinear gap metric and the nonlinear parallel projection. The
nominal plant Pnom is for ml=0.

The controlled system, defined by Eq.(1), is simulated for the range of load mass
presented by Table 1. The simulation results can be seen in Figure 4 and Figure 5.

Figure 4: Joint velocities of the controlled system with ml=0,14 kg (left) and ml=0,56 kg (right).
As it can be seen, both presents a stable, although oscillatory, response.

Figure 5: Joint velocities of the controlled system with ml=6,44 kg (left) and ml=6,72 kg (right).
As it can be seen in the figure above, the left plot still converges despite the oscillations, while the
right plot diverges from the equilibrium point and goes unstable.

In the second case study, a multiplicative nonlinear dynamic uncertainty of the form
∆ = 1

q1−0,01 is applied to the disturbed system (Pml
) subjected to the load mass variation.



The new values of the nonlinear gap metric and nonlinear parallel projection are presented
in Table 2.

γ(Pnom,u∗) = 0,65
ml [kg] δν,ce(Pnom,∆Pml

)

0,14 0,92
0,56 0,94
6,72 0,99

Table 2: Values of the nonlinear gap metric and the nonlinear parallel projection for the
nonlinear dynamic uncertainty. The nominal plant Pnom is for ml=0.

Then, a simulation of he system coupled with the dynamic uncertainty was performed
for the range of load mass shown in Table 2. The joint velocities obtained for the joint q1
is shown in Figure 6.

Figure 6: Joint velocity of the controlled system subjected to a nonlinear dynamic uncertainty.

More informations concerning the parameters used in the SCARA simulations is pre-
sented in the Appendix - Parameters of the SCARA manipulator.

5 Discussions

For the first case, initially, the values of the gap metric, as well as the nonlinear parallel
projection, were calculated for the range of load mass uncertainty used for the control design
in [1] which is ml ∈ [0, 28; 0, 26] kg. However, after the analysis of the values of δν,ce(.)
obtained for this range of load mass variation, and by comparing these values with the
nonlinear parallel projection using the theorem 3.2.1, it was observed that the controlled
system can endure a bigger range of load mass uncertainty meaning that the LQR control
law is even more robust than planned. As it is shown in the Table 1, the load mass can
be increased much further than the range used in [1], reaching values of up to ml = 6, 72.
At this point the theorem 3.2.1 is not satisfied anymore and the robust stability cannot
be guaranteed. The simulations of joint velocities confirmed the gap metric analysis and
the system became unstable for ml = 6, 72. It is important to mention that only the most
critical load mass values for the uncertainty analysis were presented in Table 1.



In the second case, a multiplicative nonlinear dynamic uncertainty, with a singularity
point, was chosen for one reason. Even in the presence of singularities, the nonlinear
gap metric is still able to calculate the distance between systems due to the Lebesgue
domain used in the process, which removes these singularities. It is observed from Table 2
that the presence of the multiplicative uncertainty increased considerably the values of the
gap metric δν,ce(Pnom,∆Pml

) for all the range of load mass uncertainty. Then, applying
theorem 3.2.1, along with the nonlinear parallel projection value γ(Pnom, u

∗) = 0, 65, the
robust stability cannot be guaranteed. It is important to notice that just by looking at the
joint velocities simulations, shown in Figure 6, does not tell much about the stability or
instability of the system, therefore, more systematic analysis are needed. Unfortunately,
the gap metric analysis is just a sufficient condition for robust stability but not a necessary
condition. In other words, when theorem 3.2.1 stops being satisfied, nothing can be said
about the dynamic behavior of the systems in the gap metric sense. That is, it can be used
to guarantee stability, but not instability.

6 Conclusion

The nonlinear gap metric was able to establish a large range of parametric admissible
uncertainties for the SCARA manipulator, confirming the robustness of the LQR control
law. One restriction of the gap metric is that it is just a sufficient condition for robust
stability guarantee and, therefore, may not be adequate for several types of systems and
uncertainties. This paper demonstrated that the nonlinear gap can be a good tool to ana-
lyze parametric uncertainties represented by the load mass variation which is an important
phenomenon in robotic systems, for instance in rehabilitative robotics where stability is a
must. For future works it is highlighted the possibility of maximizing the nonlinear parallel
projection with the LQR controller in order to achieve an optimal control law in the gap
metric sense, which means also maximizing the range of admissible uncertainties.
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